Every z-score has a unique cumulative normal probability associated with it - which means we are able to do this process in reverse. We can take a given probability and find a z-score that is associated through the function: invNorm(p). This is also found in the distributions menu: press [2nd [VARS]. This function takes one input, which is the total cumulative area to the of thez-score we want to find. If our problem gives us area to the right, we have to make an adjustment first.
(Ex) Find the z-score associated with the shaded region:
(Ex) Find thez-score associated with the shaded region:

You can also use the normal distribution in reverse with values relative to any mean or standard deviation, but you first need to solve the z-score formula for x :

$$
=\mu+\sigma
$$

Then after you get your z-score values from invN orm, you can put them into this formula to convert them.

Alternatively, you can also provide additional inputs to invNorm and the calculator will convert these numbers for you, using the above formula.

1. 1-input: invN orm (p)
2. 3-input: invN orm (p, mean, standard deviation)

In either case, the value of p is assumed to be the area under the curve to the left of the value you are

1. IQ scores are normally distributed with mean of 100 IQ points and a standard deviation of 15 IQ points. What score bounds the top 10% of IQ scores?
2. Women's heights are normally distributed with a mean of 63.8 inches and a standard deviation of 2.9 inches. If the shortest 1% of women are ineligible to serve in the military, what is the cut-off height a woman must be in order to be eligible for military service?
